Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.959
Filtrar
1.
Protein Sci ; 33(5): e4977, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38591646

RESUMO

Chemical warfare nerve agents and pesticides, known as organophosphorus compounds inactivate cholinesterases (ChEs) by phosphorylating the serine hydroxyl group located at the active site of ChEs. Over the course of time, phosphorylation is followed by loss of an organophosphate-leaving group and the bond with ChEs becomes irreversible, a process known as aging. Differently, structurally related irreversible catalytic poisons bearing sulfur instead of phosphorus convert ChEs in its aged form only by covalently binding to the key catalytic serine. Kinetic and crystallographic studies of the interaction between Torpedo californica acetylcholinesterase (TcAChE) and a small organosulfonate, methanesulfonyl fluoride (MSF), indeed revealed irreversibly methylsulfonylated serine 200, to be isosteric with the bound aged sarin/soman analogues. The potent bulky reversible inhibitor 7-bis-tacrine (BTA) adopts, in the active site of the crystal structure of the MSF-enzyme adduct, a location and an orientation that closely resemble the one being found in the crystal structure of the BTA-enzyme complex. Remarkably, the presence of BTA accelerates the rate of methanesulfonylation by a factor of two. This unexpected result can be explained on the basis of two facts: i) the steric hindrance exerted by BTA to MSF in accessing the active site and ii) the acceleration of the MSF-enzyme adduct formation as a consequence of the lowering of the rotational and translational degrees of freedom in the proximity of the catalytic serine. It is well known that pralidoxime (2-Pyridine Aldoxime Methyl chloride, 2-PAM) alone or in the presence of the substrate acetylcholine cannot reactivate the active site serine of the TcAChE-MSF adduct. We show that the simultaneous presence of 2-PAM and the additional neutral oxime, 2-[(hydroxyimino)methyl]-l-methylimidazol (2-HAM), triggers the reactivation process of TcAChE within the hour timescale. Overall, our results pave the way toward the likely use of a cocktail of distinctive oximes as a promising recipe for an effective and fast reactivation of aged cholinesterases.


Assuntos
Acetilcolinesterase , Inibidores da Colinesterase , Compostos de Pralidoxima , Sulfonas , Taurina/análogos & derivados , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Acetilcolinesterase/química , Oximas/química , Serina
2.
J Biotechnol ; 384: 12-19, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38373531

RESUMO

Nitriles have a wide range of uses as building blocks, solvents, and alternative fuels, but also as intermediates and components of flavors and fragrances. The enzymatic synthesis of nitriles by aldoxime dehydratase (Oxd) is an emerging process with significant advantages over conventional approaches. Here we focus on the immobilization of His-tagged Oxds on metal affinity resins, an approach that has not been used previously for these enzymes. The potential of the immobilized Oxd was demonstrated for the synthesis of phenylacetonitrile (PAN) and E-cinnamonitrile, compounds applicable in the fragrance industry. A comparison of Talon and Ni-NTA resins showed that Ni-NTA with its higher binding capacity was more suitable for the immobilization of Oxd. Immobilized Oxds were prepared from purified enzymes (OxdFv from Fusarium vanettenii and OxdBr1 from Bradyrhizobium sp.) or the corresponding cell-free extracts. The immobilization of cell-free extracts reduced time and cost of the catalyst production. The immobilized OxdBr1 was superior in terms of recyclability (22 cycles) in the synthesis of PAN from 15 mM E/Z-phenylacetaldoxime at pH 7.0 and 30 °C (100% conversion, 61% isolated yield after product purification). The volumetric and catalyst productivity was 10.5 g/L/h and 48.3 g/g of immobilized protein, respectively.


Assuntos
Hidroliases , Odorantes , Hidroliases/metabolismo , Nitrilas/metabolismo , Oximas/química , Oximas/metabolismo , Enzimas Imobilizadas
3.
Chem Biol Interact ; 392: 110929, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38417730

RESUMO

Despite the international convention on the prohibition of chemical weapons ratified in 1997, the threat of conflicts and terrorist attacks involving such weapons still exists. Among these, organophosphorus-nerve agents (OPs) inhibit cholinesterases (ChE) causing cholinergic syndrome. The reactivation of these enzymes is therefore essential to protect the poisoned people. However, these reactivating molecules, mainly named oximes, have major drawbacks with limited efficacy against some OPs and a non-negligible ChE inhibitor potential if administered at an inadequate dose, an effect that they are precisely supposed to mitigate. As a result, this project focused on assessing therapeutic efficacy, in mice, up to the NOAEL dose, the maximum dose of oxime that does not induce any observable toxic effect. NOAEL doses of HI-6 DMS, a reference oxime, and JDS364. HCl, a candidate reactivator, were assessed using dual-chamber plethysmography, with respiratory ventilation impairment as a toxicity criterion. Time-course modeling parameters and pharmacodynamic profiles, reflecting the interaction between the oxime and circulating ChE, were evaluated for treatments at their NOAEL and higher doses. Finally, the therapeutic potential against OPs poisoning was determined through the assessment of protective indices. For JDS364. HCl, the NOAEL dose corresponds to the smallest dose inducing the most significant therapeutic effect without causing any abnormality in ChE activity. In contrast, for HI-6 DMS, its therapeutic benefit was observed at doses higher than its NOAEL, leading to alterations in respiratory function. These alterations could not be directly correlated with ChE inhibition and had no adverse effects on survival. They are potentially attributed to the stimulation of non-enzymatic cholinergic targets by HI-6 DMS. Thus, the NOAEL appears to be an optimal dose for evaluating the efficacy of oximes, particularly when it can be linked to respiratory alterations effectively resulting from ChE inhibition.


Assuntos
Substâncias para a Guerra Química , Reativadores da Colinesterase , Agentes Neurotóxicos , Humanos , Camundongos , Animais , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/uso terapêutico , Reativadores da Colinesterase/química , Agentes Neurotóxicos/toxicidade , Nível de Efeito Adverso não Observado , Substâncias para a Guerra Química/toxicidade , Oximas/farmacologia , Oximas/uso terapêutico , Oximas/química , Compostos de Piridínio/farmacologia , Inibidores da Colinesterase/toxicidade , Inibidores da Colinesterase/química , Colinesterases , Acetilcolinesterase , Antídotos/farmacologia , Antídotos/uso terapêutico
4.
Int J Nanomedicine ; 19: 307-326, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38229703

RESUMO

Introduction: Organophosphates are among the deadliest of known chemicals based on their ability to inactivate acetylcholinesterase in neuromuscular junctions and synapses of the central and peripheral nervous systems. The consequent accumulation of acetylcholine can produce severe acute toxicities and death. Oxime antidotes act by reactivating acetylcholinesterase with the only such reactivator approved for use in the United States being 2-pyridine aldoxime methyl chloride (a.k.a., pralidoxime or 2-PAM). However, this compound does not cross the blood-brain barrier readily and so is limited in its ability to reactivate acetylcholinesterase in the brain. Methods: We have developed a novel formulation of 2-PAM by encapsulating it within a nanocomplex designed to cross the blood-brain barrier via transferrin receptor-mediated transcytosis. This nanocomplex (termed scL-2PAM) has been subjected to head-to-head comparisons with unencapsulated 2-PAM in mice exposed to paraoxon, an organophosphate with anticholinesterase activity. Results and Discussion: In mice exposed to a sublethal dose of paraoxon, scL-2PAM reduced the extent and duration of cholinergic symptoms more effectively than did unencapsulated 2-PAM. The scL-2PAM formulation was also more effective than unencapsulated 2-PAM in rescuing mice from death after exposure to otherwise-lethal levels of paraoxon. Improved survival rates in paraoxon-exposed mice were accompanied by a higher degree of reactivation of brain acetylcholinesterase. Conclusion: Our data indicate that scL-2PAM is superior to the currently used form of 2-PAM in terms of both mitigating paraoxon toxicity in mice and reactivating acetylcholinesterase in their brains.


Assuntos
Inibidores da Colinesterase , Reativadores da Colinesterase , Paraoxon , Compostos de Pralidoxima , Animais , Camundongos , Acetilcolinesterase/metabolismo , Encéfalo/metabolismo , Inibidores da Colinesterase/toxicidade , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Organofosfatos , Oximas/farmacologia , Oximas/química , Paraoxon/toxicidade , Paraoxon/química , Compostos de Pralidoxima/química , Compostos de Pralidoxima/farmacologia
5.
Chem Biol Interact ; 387: 110789, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37931869

RESUMO

The kinetic analysis of esterase inhibition by acylating compounds (organophosphorus, carbamates and sulfonylfluorides) sometimes cannot yield consistent results by fitting simple inhibition kinetic models to experimental data of complex systems. In this work kinetic data were obtained for demeton-S-methyl (DSM) with human acetylcholinesterase in two kinds of experiments: (a) time progressive inhibition with a range of concentrations, (b) progressive spontaneous reactivation starting with pre-inhibited enzyme. DSM is an organophosphorus compound used as pesticide and considered a model for studying the dermal exposure of nerve agents such as VX gas. A kinetic model equation was deduced with four different molecular phenomena occurring simultaneously: (1) inhibition; (2) spontaneous reactivation; (3) aging; and (4) ongoing inhibition (inhibition during the substrate reaction). A 3D fit of the model was applied to analyze the inhibition experimental data. The best-fitting model is compatible with a sensitive enzymatic entity. The second-order rate constant of inhibition (ki = 0.0422 µM-1 min-1), the spontaneous reactivation constant (ks = 0.0202 min-1) and the aging constant (kg = 0.0043 min-1) were simultaneously estimated. As an example for testing the model and approach, it was tested also in the presence of 5 % ethanol (conditions as previously used in the literature), the best fitting model is compatible with two apparent sensitive enzymatic entities (17 % and 83 %) and only one spontaneously reactivates and ages. The corresponding second-order rate constants of inhibition (ki = 0.0354 and 0.0119 µM-1 min-1) and the spontaneous reactivation and aging constants for the less sensitive component (kr = 0.0203 min-1 and kg = 0.0088 min-1) were estimated. The results were also consistent with a significant ongoing inhibition. These parameters were similar to those deduced in spontaneous reactivation experiments of the pre-inhibited samples with DSM in the absence or presence of ethanol. The two apparent components fit was interpreted by an equilibrium between ethanol-free and ethanol-bound enzyme. The consistency of results in inhibition and in spontaneous reactivation experiments was considered an internal validation of the methodology and the conclusions.


Assuntos
Acetilcolinesterase , Inibidores da Colinesterase , Reativadores da Colinesterase , Organofosfatos , Humanos , Acetilcolinesterase/química , Inibidores da Colinesterase/farmacologia , Reativadores da Colinesterase/farmacologia , Etanol , Cinética , Oximas/química , Ativação Enzimática , Organofosfatos/farmacologia
7.
Environ Pollut ; 344: 123269, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38159627

RESUMO

The removal and recovery of uranium [U(VI)] from organic containing wastewater has been a challenging in radioactive wastewater purification. Here, we designed a polyamine/amidoxime polyacrylonitrile fiber (PAN-AO-A) with high removal efficiency, excellent selectivity, excellent organic resistance and low cost by combining the anti-organic properties of amidoxime polyacrylonitrile fiber (PAN-AO-A) with the high adsorption capacity of polyamine polyacrylonitrile fiber, which is used to extract U(VI) from low-level uranium-containing wastewater with high ammonia nitrogen and organic content. PAN-AO-A adsorbent with high grafting rate (86.52%), high adsorption capacity (qe = 618.8 mg g-1), and strong resistance to organics and impurity interference is achieved. The adsorption rate of U(VI) in both real organic and laundry wastewater containing uranium is as high as 99.7%, and the partition coefficients (Kd) are 7.61 × 105 mL g-1 and 9.16 × 106 mL g-1, respectively. The saturated adsorption capacity of PAN-AO-A in the continuous system solution can reach up to 505.5 mg g-1, and the concentration of U(VI) in the effluent is as low as 1 µg L-1. XPS analysis and Density functional theory (DFT) studies the coordination form between U(VI) and PAN-AO-A, where the most stable structure is η2-AO(UO2)(CO3)2. The -NH-/-NH2 and -C(NH2)N-OH groups of PAN-AO-A exhibit a synergistic complex effect in the U(VI) adsorption process. PAN-AO-A is a material with profound influence and limitless potential that can be used for wastewater containing U(VI) and organic matter.


Assuntos
Urânio , Águas Residuárias , Urânio/análise , Poliaminas , Oximas/química , Adsorção
8.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069175

RESUMO

The present review explores the critical role of oxime and oxime ether moieties in enhancing the physicochemical and anticancer properties of structurally diverse molecular frameworks. Specific examples are carefully selected to illustrate the distinct contributions of these functional groups to general strategies for molecular design, modulation of biological activities, computational modeling, and structure-activity relationship studies. An extensive literature search was conducted across three databases, including PubMed, Google Scholar, and Scifinder, enabling us to create one of the most comprehensive overviews of how oximes and oxime ethers impact antitumor activities within a wide range of structural frameworks. This search focused on various combinations of keywords or their synonyms, related to the anticancer activity of oximes and oxime ethers, structure-activity relationships, mechanism of action, as well as molecular dynamics and docking studies. Each article was evaluated based on its scientific merit and the depth of the study, resulting in 268 cited references and more than 336 illustrative chemical structures carefully selected to support this analysis. As many previous reviews focus on one subclass of this extensive family of compounds, this report represents one of the rare and fully comprehensive assessments of the anticancer potential of this group of molecules across diverse molecular scaffolds.


Assuntos
Éter , Oximas , Oximas/farmacologia , Oximas/química , Éteres/farmacologia , Éteres/química , Relação Estrutura-Atividade , Etil-Éteres
9.
Chem Res Toxicol ; 36(12): 1912-1920, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37950699

RESUMO

Oxime reactivators of acetylcholinesterase (AChE) are used as causal antidotes for intended and unintended poisoning by organophosphate nerve agents and pesticides. Despite all efforts to develop new AChE reactivators, none of these drug candidates replaced conventional clinically used oximes. In addition to the therapeutic efficacy, determining the safety profile is crucial in preclinical drug evaluation. The exact mechanism of oxime toxicity and the structure-toxicity relationship are subjects of ongoing research, with oxidative stress proposed as a possible mechanism. In the present study, we investigated four promising bispyridinium oxime AChE reactivators, K048, K074, K075, and K203, and their ability to induce oxidative stress in vitro. Cultured human hepatoma cells were exposed to oximes at concentrations corresponding to their IC50 values determined by the MTT assay after 24 h. Their potency to generate reactive oxygen species, interfere with the thiol antioxidant system, and induce lipid peroxidation was evaluated at 1, 4, and 24 h of exposure. Reactivators without a double bond in the four-carbon linker, K048 and K074, showed a greater potential to induce oxidative stress compared with K075 and K203, which contain a double bond. Unlike oximes with a three-carbon-long linker, the number of aldoxime groups attached to the pyridinium moieties does not determine the oxidative stress induction for K048, K074, K075, and K203 oximes. In conclusion, our results emphasize that the structure of oximes plays a critical role in inducing oxidative stress, and this relationship does not correlate with their cytotoxicity expressed as the IC50 value. However, it is important to note that oxidative stress cannot be disregarded as a potential contributor to the side effects associated with oximes.


Assuntos
Reativadores da Colinesterase , Humanos , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Acetilcolinesterase/metabolismo , Células Hep G2 , Inibidores da Colinesterase/toxicidade , Oximas/farmacologia , Oximas/química , Antídotos/farmacologia , Organofosfatos/toxicidade , Estresse Oxidativo , Carbono , Compostos de Piridínio/farmacologia , Compostos de Piridínio/química
10.
Chem Biol Interact ; 385: 110734, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37788753

RESUMO

Acetylcholinesterase (AChE, EC 3.1.1.7) reactivators (2-PAM, trimedoxime, obidoxime, asoxime) have become an integral part of antidotal treatment in cases of nerve agent and organophosphorus (OP) pesticide poisonings. They are often referred to as specific antidotes due to their ability to restore AChE function when it has been covalently inhibited by an OP compound. Currently available commercial reactivators exhibit limited ability to penetrate the blood-brain barrier, where reactivation of inhibited AChE is crucial. Consequently, there have been numerous efforts to discover more brain-penetrating AChE reactivators. In this study, we examined a derivative of 2-PAM designed to possess increased lipophilicity. This enhanced lipophilicity was achieved through the incorporation of a benzyl group into its molecular structure. Initially, a molecular modeling study was conducted, followed by a comparison of its reactivation efficacy with that of 2-PAM against 10 different AChE inhibitors in vitro. Unfortunately, this relatively significant structural modification of 2-PAM resulted in a decrease in its reactivation potency. Consequently, this derivative cannot be considered as a broad-spectrum AChE reactivator.


Assuntos
Reativadores da Colinesterase , Intoxicação por Organofosfatos , Humanos , Reativadores da Colinesterase/química , Acetilcolinesterase/metabolismo , Compostos de Pralidoxima/farmacologia , Antídotos/farmacologia , Oximas/farmacologia , Oximas/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/metabolismo
11.
J Mater Chem B ; 11(41): 9889-9893, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37850246

RESUMO

Far-red BODIPY-based oxime esters for photo-uncaging were designed to release molecules of interest with carboxylic acids. The low power red LED light breaks the N-O oxime ester bond and frees the caged molecules. We studied the mechanism and kinetics of the uncaging procedure using a 1H NMR spectrometer. Moreover, the drug delivery strategy to release valproic acid (VPA) on demand was tested in vitro using this far-red BODIPY photo-uncaging strategy to induce apoptosis in tumor cells.


Assuntos
Ésteres , Oximas , Ésteres/química , Oximas/química , Luz , Compostos de Boro/química
12.
Nucl Med Rev Cent East Eur ; 26(0): 109-115, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37786914

RESUMO

BACKGROUND: A challenge for modern medicine is the development of clinical protocols for precise diagnosis and therapy. This study aimed to propose a simple method for modification of 2-[18F]FDG used routinely in hospitals in a way, appropriate for patients' personalized radiopharmaceuticals approach. MATERIAL AND METHODS: For the purposes of the presented study chemo selective method for indirect radiofluorination was applauded to custom synthesized aminooxy- and hydrazine-functionalized tetrazines for 18F-glycolation via oxime or hydrazone formation. 2-[18F]FDG produced with medical baby cyclotron in Nuclear Medicine Clinic at the University Hospital St. Marina-Varna, was used. Thin layer chromatography (TLC) and radio TLC were used to follow the progress of synthesis and to determine radio chemical yield (RCY). RESULTS: The 2-[18F]FDG was modified with two bifunctional tetrazines aminooxy-acetic acid-6-(2-aminooxy-acetoxy)-[1,2,4,5] tetrazin-3-yl ester (Tz1) and {3-[4-(6-phenyl-[1,2,4,5]tetrazin-3-yl)-phenoxy]-propyl}-hydrazine (Tz2) via oxime and hydrazone formation. The radiolabeling was carried out as one-pot reaction with following parameters: temperature 70-75°C; catalyst p- diaminobenzene (Cat.); pH = 4.2; time 30 minutes; RCY = 70-99%. The radiolabeled tetrazines are appropriate for further bioorthogonal (pretargeting) strategy by click reactions with trans-cyclooctene conjugated bioactive molecules. The methodology is applicable to standard clinical conditions.


Assuntos
Fluordesoxiglucose F18 , Compostos Radiofarmacêuticos , Humanos , Glucose , Oximas/química
13.
J Comput Aided Mol Des ; 37(12): 755-764, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37796381

RESUMO

Owing to their potential to cause serious adverse health effects, significant efforts have been made to develop antidotes for organophosphate (OP) anticholinesterases, such as nerve agents. To be optimally effective, antidotes must not only reactivate inhibited target enzymes, but also have the ability to cross the blood-brain barrier (BBB). Progress has been made toward brain-penetrating acetylcholinesterase reactivators through the development of a new group of substituted phenoxyalkyl pyridinium oximes. To help in the selection and prioritization of compounds for future synthesis and testing within this class of chemicals, and to identify candidate broad-spectrum molecules, an in silico framework was developed to systematically generate structures and screen them for reactivation efficacy and BBB penetration potential.


Assuntos
Antídotos , Reativadores da Colinesterase , Antídotos/farmacologia , Antídotos/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Organofosfatos , Acetilcolinesterase/química , Oximas/química
14.
Chem Biol Interact ; 385: 110735, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37802409

RESUMO

We report a green chemistry approach for preparation of oxime-functionalized ILs as AChE reactivators: amide/ester linked IL, l-alanine, and l-phenylalanine derived salts bearing pyridinium aldoxime moiety. The reactivation capacities of the novel oximes were evaluated towards AChE inhibited by typical toxic organophosphates, sarin (GB), VX, and paraoxon (PON). The studied compounds are mostly non-toxic up to the highest concentrations screened (2 mM) towards Gram-negative and Gram-positive bacteria cell lines and both filamentous fungi and yeasts in the in vitro screening experiments as well as towards the eukaryotic cell (CHO-K1 cell line). Introduction of the oxime moiety in initially biodegradable structure decreases its ability to biodegradation. The compound 3d was shown to reveal remarkable activity against the AChE inhibited by VX, exceeding conventional reactivators 2-PAM and obidoxime. The regularities on antidotal activity, cell viability, plasma stability, biodegradability as well as molecular docking study of the newly synthesized oximes will be used for further improvement of their structures.


Assuntos
Reativadores da Colinesterase , Líquidos Iônicos , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Oximas/farmacologia , Oximas/química , Antídotos , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Compostos de Piridínio/farmacologia , Compostos de Piridínio/química
15.
Bioorg Med Chem Lett ; 96: 129504, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37838342

RESUMO

This study aimed to explore non-pyridinium oxime acetylcholinesterase (AChE) reactivators that could hold the potential to overcome the limitations of the currently available compounds used in the clinic to treat the neurologic manifestations induced by intoxication with organophosphorus agents. Fifteen compounds with various non-pyridinium oxime moieties were evaluated for AChE activity at different concentrations, including aldoximes, ketoximes, and α-ketoaldoximes. The therapeutic potential of the oxime compounds was evaluated by assessing their ability to reactivate AChE inhibited by paraoxon. Among the tested compounds, α-Ketoaldoxime derivative 13 showed the highest reactivation (%) reaching 67 % and 60 % AChE reactivation when evaluated against OP-inhibited electric eel AChE at concentrations of 1,000 and 100 µM, respectively. Compound 13 showed a comparable reactivation ability of AChE (60 %) compared to that of pralidoxime (56 %) at concentrations of 100 µM. Molecular docking simulation of the most active compounds 12 and 13 was conducted to predict the binding mode of the reactivation of electric eel AChE. As a result, a non-pyridinium oxime moiety 13, is a potential reactivator of OP-inhibited AChE and is taken as a lead compound for the development of novel AChE reactivators with enhanced capacity to freely cross the blood-brain barrier.


Assuntos
Reativadores da Colinesterase , Oximas , Oximas/farmacologia , Oximas/química , Paraoxon/farmacologia , Acetilcolinesterase/metabolismo , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Simulação de Acoplamento Molecular , Compostos de Piridínio/farmacologia , Compostos de Piridínio/química , Acetamidas , Compostos Organofosforados/química
16.
Environ Sci Pollut Res Int ; 30(47): 103496-103512, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37704807

RESUMO

As per statistical estimations, we have only around 100 years of uranium life in terrestrial ores. In contrast, seawater has viable uranium resources that can secure the future of energy. However, to achieve this, environmental challenges need to be overcome, such as low uranium concentration (3.3 ppb), fouling of adsorbents, uranium speciation, oceanic temperature, and competition between elements for the active site of adsorbent (such as vanadium which has a significant influence on uranium adsorption). Furthermore, the deployability of adsorbent under seawater conditions is a gigantic challenge; hence, leaching-resistant stable adsorbents with good reusability and high elution rates are extremely needed. Powdered (nanostructured) adsorbents available today have limitations in fulfilling these requirements. An increase in the grafting density of functional ligands keeping in view economic sustainability is also a major obstacle but a necessity for high uranium uptake. To cope with these challenges, researchers reported hundreds of adsorbents of different kinds, but amidoxime-based polymeric adsorbents have shown some remarkable advantages and are considered the benchmark in uranium extraction history; they have a high affinity for uranium because of electron donors in their structure, and their amphoteric nature is responsible for effective uranium chelation under a wide range of pH. In this review, we have mainly focused on recent developments in uranium extraction from seawater through amidoxime-based adsorbents, their comparative analysis, and problematic factors that are needed to be considered for future research.


Assuntos
Urânio , Urânio/química , Água do Mar/química , Oceanos e Mares , Oximas/química
17.
Molecules ; 28(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37764297

RESUMO

New 1,5-diarylpyrazole oxime hybrid derivatives (scaffolds A and B) were designed, synthesized, and then their purity was verified using a variety of spectroscopic methods. A panel of five cancer cell lines known to express EGFR and JNK-2, including human colorectal adenocarcinoma cell line DLD-1, human cervical cancer cell line Hela, human leukemia cell line K562, human pancreatic cell line SUIT-2, and human hepatocellular carcinoma cell line HepG2, were used to biologically evaluate for their in vitro cytotoxicity for all the synthesized compounds 7a-j, 8a-j, 9a-c, and 10a-c. The oxime containing compounds 8a-j and 10a-c were more active as antiproliferative agents than their non-oxime congeners 7a-j and 9a-c. Compounds 8d, 8g, 8i, and 10c inhibited EGFR with IC50 values ranging from 8 to 21 µM when compared with sorafenib. Compound 8i inhibited JNK-2 as effectively as sorafenib, with an IC50 of 1.0 µM. Furthermore, compound 8g showed cell cycle arrest at the G2/M phase in the cell cycle analysis of the Hela cell line, whereas compound 8i showed combined S phase and G2 phase arrest. According to docking studies, oxime hybrid compounds 8d, 8g, 8i, and 10c exhibited binding free energies ranging from -12.98 to 32.30 kcal/mol at the EGFR binding site whereas compounds 8d and 8i had binding free energies ranging from -9.16 to -12.00 kcal/mol at the JNK-2 binding site.


Assuntos
Antineoplásicos , Oximas , Humanos , Simulação de Acoplamento Molecular , Sorafenibe/farmacologia , Relação Estrutura-Atividade , Células HeLa , Oximas/química , Linhagem Celular Tumoral , Antineoplásicos/química , Receptores ErbB/metabolismo , Proliferação de Células , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Proteínas Quinases
18.
Chem Biol Interact ; 383: 110656, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37579936

RESUMO

At the present, only four antidotes are in use in therapy for poisoning by organophosphorus compounds: 2-PAM, HI-6, obidoxime and trimedoxime. Numerous compounds have been designed and synthetized to be more effective reactivators than those currently in use. Many of those new compounds fail at the enzyme level because interactions formed within the AChE active site are not favourable ones that lead to a successful reactivation. The approach in which the modeling of a phosphorylated oxime (POX), a product of successful reactivation in the AChE active site, may be a way to better understand the role of active site residues during the process of formation of the Michaelis type of complex between an enzyme and oxime. After reactivation, a change in phosphorus stereochemistry occurs leading to a different spatial arrangement of attached substituents, now including an oxime. To study interactions between the AChE oxyanion hole and a phosphorylated oxime, an S203G mutant was used to avoid the steric hindrance caused by the catalytic serine. In this way, the POX could be positioned close to the oxyanion hole. In the final step, the oxime without a phosphoester moiety was transferred into the phosphorylated AChE and molecular dynamics was used to test the stability of the near-attack conformation of the oxime near the phosphorylated serine.


Assuntos
Reativadores da Colinesterase , Oximas , Oximas/farmacologia , Oximas/química , Acetilcolinesterase/química , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Compostos Organofosforados/química
19.
Molecules ; 28(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37446703

RESUMO

Oxime ethers are a class of compounds containing the >C=N-O-R moiety. The presence of this moiety affects the biological activity of the compounds. In this review, the structures of oxime ethers with specific biological activity have been collected and presented, and bactericidal, fungicidal, antidepressant, anticancer and herbicidal activities, among others, are described. The review includes both those substances that are currently used as drugs (e.g., fluvoxamine, mayzent, ridogrel, oxiconazole), as well as non-drug structures for which various biological activity studies have been conducted. To the best of our knowledge, this is the first review of the biological activity of compounds containing such a moiety. The authors hope that this review will inspire scientists to take a greater interest in this group of compounds, as it constitutes an interesting research area.


Assuntos
Anestésicos Gerais , Fungicidas Industriais , Éteres/química , Relação Estrutura-Atividade , Oximas/farmacologia , Oximas/química , Fungicidas Industriais/farmacologia , Antibacterianos/farmacologia
20.
Molecules ; 28(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37446890

RESUMO

Quinone methides are a class of biologically active compounds that can be used in medicine as antibacterial, antifungal, antiviral, antioxidant, and anti-inflammatory agents. In addition, quinone methides have the potential to be used as pesticides, dyes, and additives for rubber and plastics. In this paper, we discuss a subclass of quinone methides: methylenequinone oximes. Although the first representatives of the subgroup were synthesized in the distant past, they still need to be additionally studied, while their chemistry, biological properties, and perspective of practical applications require to be comprehensively summarised. Based on the analysis of the literature, it can be concluded that methylenequinone oximes exhibit a diversified profile of properties and outstanding potential as new drug candidates and reagents in organic synthesis, both of electrophilic and nucleophilic nature, worthy of wide-ranging further research.


Assuntos
Indolquinonas , Oximas , Oximas/farmacologia , Oximas/química , Indolquinonas/química , Antibacterianos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...